EXERCISES FUCHSIAN DIFFERENTIAL EQUATIONS FALL 2022

Herwig HAUSER

17 Determine the kernels and images of the three operators

$$L = x^{2}\partial^{2} - x\partial - x^{3},$$
$$L = x^{2}\partial^{2} - x\partial - x^{2},$$
$$L = x^{2}\partial^{2} - x\partial - x,$$

acting on $\widehat{\mathcal{O}} = \mathbb{C}[[x]].$

Remark. As you might expect, the answers are quite different, for different reasons. For more details, see [Gann-Hauser, JSC, p. 4 and p. 9], available on www.hh.hauser.cc.

18 Let $y_1 = x^{\rho}, ..., y_m = x^{\rho} \log(x)^{m-1}$ be the solutions of the Euler equation $L_0 y = 0$ with respect to the local exponent ρ of multiplicity m, and let $L \in \mathcal{O}[\partial]$ have initial form L_0 . Assume that ρ is maximal with respect to \mathbb{Z} and that 0 is a regular point of L. Then the solutions of Ly = 0 are of the form, for $1 \le i \le m$,

$$y_1(x) = x^{\rho} h_1(x),$$

$$y_2(x) = x^{\rho} [h_2(x) + h_1(x) \log(x)],$$

$$y_i(x) = x^{\rho} [h_i(x) + h_{i-1}(x) \log(x) + \ldots + h_1(x) \log(x)^{i-1}],$$

a1 ()

with $h_1, ..., h_m$ holomorphic functions in \mathcal{O} .

Hint. Use the description of the automorphism u of $\mathcal{F} = x^{\rho} \mathcal{O}[z]_{\leq m}$ in the normal form theorem.

19 Let $E = x^3 \partial^3 - 4x^2 \partial^2 + 9x \partial - 9$ be an Euler operator with indicial polynomial $\chi(t) = (t-1)(t-3)^2$ and local exponents $\rho = 3$ of multiplicity m = 2 and $\sigma = 1$ of multiplicity 1. Let it act on $x\mathcal{O}[z]_{\leq 2}$. Then

$$\underline{E}(x^k z^i) = x^k [(k-1)(k-3)^2 z^i + (3k-5)(k-1)iz^{i-1} + (6k-14)i^2 z^{i-2} + 6i^3 z^{i-3}].$$

The kernel is $\text{Ker}(E) = \mathbb{C}x \oplus \mathbb{C}x^3 \oplus \mathbb{C}x^3 z$. Determine the image $\text{Im}(E)$!

20 Let *L* be an operator with initial form $L_0 = x^2 \partial^2 - x \partial$, indicial polynomial $\chi(t) = t(t-2)$ and local exponents $\rho = 2$ and $\sigma = 0$, both of multiplicity 1. Find a suitable function space $\mathcal{F} \subset x^{\sigma} \mathcal{O}[z]$ for which one may hope to get again a normal form theorem for the extension \underline{L} of *L*, reducing it to \underline{L}_0 by means of an automorphism of \mathcal{F} .

Hint. A suitable \mathcal{F} will lie in $x^{\sigma} \mathcal{O}[z]_{\leq 2} = x^{\sigma} \mathcal{O}z$, where $2 = m_{\sigma} + m_{\rho}$.