EXERCISES FUCHSIAN DIFFERENTIAL EQUATIONS FALL 2022

Herwig HAUSER

17 Determine the kernels and images of the three operators

$$
\begin{aligned}
& L=x^{2} \partial^{2}-x \partial-x^{3}, \\
& L=x^{2} \partial^{2}-x \partial-x^{2}, \\
& L=x^{2} \partial^{2}-x \partial-x,
\end{aligned}
$$

acting on $\widehat{\mathcal{O}}=\mathbb{C}[[x]]$.
Remark. As you might expect, the answers are quite different, for different reasons. For more details, see [Gann-Hauser, JSC, p. 4 and p. 9], availaible on www.hh.hauser.cc.

18 Let $y_{1}=x^{\rho}, \ldots, y_{m}=x^{\rho} \log (x)^{m-1}$ be the solutions of the Euler equation $L_{0} y=0$ with respect to the local exponent ρ of multiplicity m, and let $L \in \mathcal{O}[\partial]$ have initial form L_{0}. Assume that ρ is maximal with respect to \mathbb{Z} and that 0 is a regular point of L. Then the solutions of $L y=0$ are of the form, for $1 \leq i \leq m$,

$$
\begin{gathered}
y_{1}(x)=x^{\rho} h_{1}(x) \\
y_{2}(x)=x^{\rho}\left[h_{2}(x)+h_{1}(x) \log (x)\right] \\
y_{i}(x)=x^{\rho}\left[h_{i}(x)+h_{i-1}(x) \log (x)+\ldots+h_{1}(x) \log (x)^{i-1}\right]
\end{gathered}
$$

with h_{1}, \ldots, h_{m} holomorphic functions in \mathcal{O}.
Hint. Use the description of the automorphism u of $\mathcal{F}=x^{\rho} \mathcal{O}[z]_{<m}$ inthe normal form theorem.

19 Let $E=x^{3} \partial^{3}-4 x^{2} \partial^{2}+9 x \partial-9$ be an Euler operator with indicial polynomial $\chi(t)=$ $(t-1)(t-3)^{2}$ and local exponents $\rho=3$ of multiplicity $m=2$ and $\sigma=1$ of multiplicity 1 . Let it act on $x \mathcal{O}[z]_{<2}$. Then
$\underline{E}\left(x^{k} z^{i}\right)=x^{k}\left[(k-1)(k-3)^{2} z^{i}+(3 k-5)(k-1) i z^{i-1}+(6 k-14) i \underline{2} z^{i-2}+6 i^{3} z^{i-3}\right]$.
The kernel is $\operatorname{Ker}(E)=\mathbb{C} x \oplus \mathbb{C} x^{3} \oplus \mathbb{C} x^{3} z$. Determine the image $\operatorname{Im}(E)$!
20 Let L be an operator with initial form $L_{0}=x^{2} \partial^{2}-x \partial$, indicial polynomial $\chi(t)=t(t-2)$ and local exponents $\rho=2$ and $\sigma=0$, both of multiplicity 1 . Find a suitable function space $\mathcal{F} \subset x^{\sigma} \mathcal{O}[z]$ for which one may hope to get again a normal form theorem for the extension \underline{L} of L, reducing it to \underline{L}_{0} by means of an automorphism of \mathcal{F}.

Hint. A suitable \mathcal{F} will lie in $x^{\sigma} \mathcal{O}[z]_{<2}=x^{\sigma} \mathcal{O} z$, where $2=m_{\sigma}+m_{\rho}$.

